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Thermonuclear (type-l) X-ray bursts arise from unstable
ignition of accreted fuel on the surface of neutron stars in
low-mass binary systems. It is usually assumed that most
systems accrete material with roughly solar composition,
unless the orbital period is < 80 min, indicating an
“ultracompact” system with a hydrogen deficient donor.
However, few constraints on the donor composition are
available.

Here we apply a Bayesian model-comparison framework,
BEANSP, to the burst source and accretion-powered
millisecond pulsar, IGR J17511-3057, to constrain the fuel
composition as well as the system parameters. Although
this system, with an orbital period of 3.5 hr can
accommodate a H-rich donor, the burst properties and our
analysis suggest an extremely hydrogen- and CNO-
deficient fuel composition with X=0.04+0.01 and
Zeno=(5.91£1.5)x10*. The implied distance is 13.4£1.1 kpc,
and the neutron star is likely massive, =1.9 Mg,

We combine these results with the three other sources for
which compositional constraints have been established,
and find an unexpectedly wide range in compositions. This
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Figure 3: Combined fuel composition
(H-fraction X and CNO fraction Z) and
neutron star mass-radius posteriors
for four bursting sources from model-
observation comparisons. Note the
extremely wide range of X, Z and
consistently high mass values.
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Matching models & data Results
We analysed a sample of 20 bursts observed during the The burst simulations reproduce the broad features of the
2010 outburst of IGR J17511-3057, detected with RXTE, bursts from IGR J17511-3057 (Figure 2).
INTEGRAL and Swift (Figure 1). In combination with the previously obtained results from
We corrected ’ghe b.urst fluences based on Cross- three other sources [4,5] we establish for the first time
instrument calibrations for events observed with constraints on the composition and NS properties of a
multiple instruments simultaneously. sample of burst sources derived from the burst energetics
We used the BEANSP [1,2] code to generate sequences themselves (Figure 3).
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Figure 1: Bolometric persistent flux (red symbols, left-hand y-axis) of IGR J17511-3057 4. Galloway et al. (2024), MNRAS 535(1), 647, doi: 10.1093/mnras/stae2422
during the 2010 outburst, adopted from [3]. The solid red line is a spline fit to the data. silohmetonicinl (2020): MNRAS 494 (3)" 457’6, doi: 10.1093/mnras/staal054
The grey symbols are the corrected fluences (right-hand y-axis) for the burst sample; the
ktimes of bursts without a measured fluence are indicated by the gray dashed lines ) * We gratefully acknowledge the contribution to this work of Prof. Maurizio Falanga,

prior to his untimely passing earlier this year.
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